1 Fig. 9 shows the curves y = f(x) and y = g(x). The function y = f(x) is given by

$$\mathbf{f}(x) = \ln\left(\frac{2x}{1+x}\right), \ x > 0.$$

The curve y = f(x) crosses the *x*-axis at P, and the line x = 2 at Q.

Fig. 9

[2]

[4]

[5]

(i) Verify that the *x*-coordinate of P is 1.

Find the exact *y*-coordinate of Q.

(ii) Find the gradient of the curve at P. [Hint: use
$$\ln \frac{a}{b} = \ln a - \ln b$$
.]

The function g(x) is given by

$$g(x) = \frac{e^x}{2 - e^x}, \quad x < \ln 2.$$

The curve y = g(x) crosses the *y*-axis at the point R.

(iii) Show that g(x) is the inverse function of f(x).

Write down the gradient of y = g(x) at R.

(iv) Show, using the substitution $u = 2 - e^x$ or otherwise, that $\int_0^{\ln \frac{4}{3}} g(x) dx = \ln \frac{3}{2}$.

Using this result, show that the exact area of the shaded region shown in Fig. 9 is $\ln \frac{32}{27}$. [Hint: consider its reflection in y = x.] [7] 2 Fig. 8 shows the line y = x and parts of the curves y = f(x) and y = g(x), where

$$f(x) = e^{x-1}$$
, $g(x) = 1 + \ln x$.

The curves intersect the axes at the points A and B, as shown. The curves and the line y = x meet at the point C.

- (i) Find the exact coordinates of A and B. Verify that the coordinates of C are (1, 1). [5]
- (ii) Prove algebraically that g(x) is the inverse of f(x). [2]
- (iii) Evaluate $\int_0^1 f(x) dx$, giving your answer in terms of e. [3]
- (iv) Use integration by parts to find $\int \ln x \, dx$. Hence show that $\int_{e^{-1}}^{1} g(x) \, dx = \frac{1}{e}$. [6]
- (v) Find the area of the region enclosed by the lines OA and OB, and the arcs AC and BC. [2]

3 Fig. 8 shows the curve y = f(x), where $f(x) = 1 + \sin 2x$ for $-\frac{1}{4}\pi \le x \le \frac{1}{4}\pi$.

Fig. 8

- (i) State a sequence of two transformations that would map part of the curve $y = \sin x$ onto the curve y = f(x). [4]
- (ii) Find the area of the region enclosed by the curve y = f(x), the *x*-axis and the line $x = \frac{1}{4}\pi$. [4]
- (iii) Find the gradient of the curve y = f(x) at the point (0, 1). Hence write down the gradient of the curve $y = f^{-1}(x)$ at the point (1, 0). [4]
- (iv) State the domain of $f^{-1}(x)$. Add a sketch of $y = f^{-1}(x)$ to a copy of Fig. 8. [3]
- (v) Find an expression for $f^{-1}(x)$.

[2]

4 Fig. 8 shows the curve y = f(x), where $f(x) = \frac{1}{1 + \cos x}$, for $0 \le x \le \frac{1}{2}\pi$.

P is the point on the curve with x-coordinate $\frac{1}{3}\pi$.

Fig. 8

(i) Find the <i>y</i> -coordinate of P.	[1]

- (ii) Find f'(x). Hence find the gradient of the curve at the point P. [5]
- (iii) Show that the derivative of $\frac{\sin x}{1 + \cos x}$ is $\frac{1}{1 + \cos x}$. Hence find the exact area of the region enclosed by the curve y = f(x), the *x*-axis, the *y*-axis and the line $x = \frac{1}{3}\pi$. [7]
- (iv) Show that $f^{-1}(x) = \arccos(\frac{1}{x} 1)$. State the domain of this inverse function, and add a sketch of $y = f^{-1}(x)$ to a copy of Fig. 8. [5]