1 Fig. 9 shows the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$. The function $y=\mathrm{f}(x)$ is given by

$$
\mathrm{f}(x)=\ln \left(\frac{2 x}{1+x}\right), x>0
$$

The curve $y=\mathrm{f}(x)$ crosses the x-axis at P , and the line $x=2$ at Q .

Fig. 9
(i) Verify that the x-coordinate of P is 1 .

Find the exact y-coordinate of Q .
(ii) Find the gradient of the curve at P. [Hint: use $\ln \frac{a}{b}=\ln a-\ln b$.]

The function $\mathrm{g}(x)$ is given by

$$
\mathrm{g}(x)=\frac{\mathrm{e}^{x}}{2-\mathrm{e}^{x}}, \quad x<\ln 2 .
$$

The curve $y=\mathrm{g}(x)$ crosses the y-axis at the point R .
(iii) Show that $\mathrm{g}(x)$ is the inverse function of $\mathrm{f}(x)$.

Write down the gradient of $y=g(x)$ at R.
(iv) Show, using the substitution $u=2-\mathrm{e}^{x}$ or otherwise, that $\int_{0}^{\ln \frac{4}{3}} \mathrm{~g}(x) \mathrm{d} x=\ln \frac{3}{2}$.

Using this result, show that the exact area of the shaded region shown in Fig. 9 is $\ln \frac{32}{27}$.
[Hint: consider its reflection in $y=x$.]

2 Fig. 8 shows the line $y=x$ and parts of the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$, where

$$
\mathrm{f}(x)=\mathrm{e}^{x-1}, \quad \mathrm{~g}(x)=1+\ln x
$$

The curves intersect the axes at the points A and B , as shown. The curves and the line $y=x$ meet at the point C .

Fig. 8
(i) Find the exact coordinates of A and B. Verify that the coordinates of C are $(1,1)$.
(ii) Prove algebraically that $\mathrm{g}(x)$ is the inverse of $\mathrm{f}(x)$.
(iii) Evaluate $\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x$, giving your answer in terms of e .
(iv) Use integration by parts to find $\int \ln x \mathrm{~d} x$.

Hence show that $\int_{\mathrm{e}^{-1}}^{1} \mathrm{~g}(x) \mathrm{d} x=\frac{1}{\mathrm{e}}$.
(v) Find the area of the region enclosed by the lines OA and OB , and the arcs AC and BC .

3 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+\sin 2 x$ for $-\frac{1}{4} \pi \leqslant x \leqslant \frac{1}{4} \pi$.

Fig. 8
(i) State a sequence of two transformations that would map part of the curve $y=\sin x$ onto the curve $y=\mathrm{f}(x)$.
(ii) Find the area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis and the line $x=\frac{1}{4} \pi$.
(iii) Find the gradient of the curve $y=\mathrm{f}(x)$ at the point $(0,1)$. Hence write down the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the point $(1,0)$.
(iv) State the domain of $\mathrm{f}^{-1}(x)$. Add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8 .
(v) Find an expression for $\mathrm{f}^{-1}(x)$.

4 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{1+\cos x}$, for $0 \leqslant x \leqslant \frac{1}{2} \pi$.
P is the point on the curve with x-coordinate $\frac{1}{3} \pi$.

Fig. 8
(i) Find the y-coordinate of P .
(ii) Find $\mathrm{f}^{\prime}(x)$. Hence find the gradient of the curve at the point P .
(iii) Show that the derivative of $\frac{\sin x}{1+\cos x}$ is $\frac{1}{1+\cos x}$. Hence find the exact area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\frac{1}{3} \pi$.
(iv) Show that $\mathrm{f}^{-1}(x)=\arccos \left(\frac{1}{x}-1\right)$. State the domain of this inverse function, and add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8.

